Two-Factor Between-Participants Designs

PSYC214: Statistics For Group Comparisons

Mark Hurlstone Lancaster University

Week 7

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Basic Ratios
SS WITHIN, BETWEEN, &

SS Main Effects
SS Interaction

ANOVA Table

Simple Mair

Learning Objectives

- How to calculate F ratios for two-factor between-participants designs
- How to calculate simple main effects, if the interaction is significant

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effe

Analysis a 2 × 2 Design

Data

Basic Ratios

SS WITHIN, BETWEEN, 8

SS Main Effects

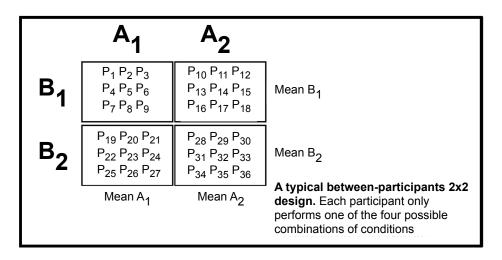
DF

ANOVA Table

Simple Main

Two-Factor Between-Participants Designs

- The simplest two-factor between-participants design is a 2 × 2 factorial design:
 - there are two factors, each with two levels, yielding a total of four cells or conditions
 - each participant contributes a single score to one condition only
- We can ask whether either of the main effects is significant
- We can also ask whether the interaction is significant
 - an interaction is interpreted in terms of the simple main effects


PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

◆□▶◆□▶◆□▶◆□▶ ■ 夕久◎

A Typical Between-Participants 2 × 2 Design

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects

Simple Main Effects

Analysis a 2 \times 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

ANOVA Table

Simple Main Effects

Main Effects

significant (ignoring factor B)?

P₁₀ P₁₁ P₁₂ $P_1 P_2 P_3$ Mean $P_4 P_5 P_6 P_7 P_8 P_9$ $P_1 P_2 P_3$ P₁₀ P₁₁ P₁₂ P₁₃ P₁₄ P₁₅ B₁ P₄ P₅ P₆ P₁₃ P₁₄ P₁₅ P₇ P₈ P₉ P₁₆ P₁₇ P₁₈ P₇ P₈ P₉ P₁₆ P₁₇ P₁₈ P₁₉ P₂₀ P₂₁ P₂₈ P₂₉ P₃₀ $P_{19} P_{20} P_{21}$ P₂₈ P₂₉ P₃₀ Mean P₂₂ P₂₃ P₂₄ P₃₁ P₃₂ P₃₃ P₂₅ P₂₆ P₂₇ P₃₄ P₃₅ P₃₆ P₂₂ P₂₃ P₂₄ P₃₁ P₃₂ P₃₃ B_2 P₂₅ P₂₆ P₂₇ P₃₄ P₃₅ P₃₆ Mean A₁ Mean A₂ Main effect of A: Is the difference Main effect of B: Is the difference between means of A₁ and A₂ between means of B₁ and B₂

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

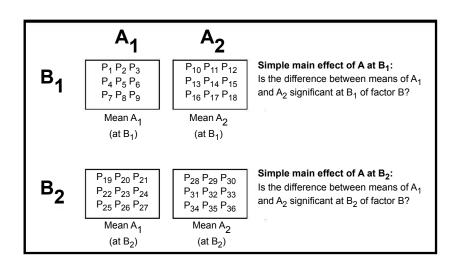
Main Effects
Simple Main Effec

Analysis a 2 ×

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL

SS Main Effection

DF


ANOVA Table

Simple Main Effects

Between-Group SS & DF Simple Main Effects Table

significant (ignoring factor A)?

Simple Main Effects of Factor A

PSYC214: Statistics for Group Comparisons

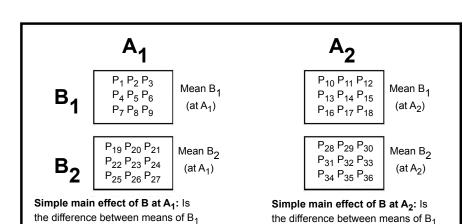
> m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Structure
Main Effects
Simple Main Effects

Analysis a 2 × 2 Design

Basic Ratios
SS WITHIN, BETWEEN,
TOTAL
SS Main Effects


DF ANOVA Table

0' ...

Simple Main Effects

Simple Main Effects of Factor B

and B₂ significant at A₁ of factor A?

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure
Main Effects
Simple Main Effects

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects
SS Interaction

ANOVA Table

Simple Main Effects

Between-Group SS & DF Simple Main Effects Table

and B₂ significant at A₂ of factor A?

Simple Main Effects

- There are two ways a pair of simple main effects may differ in their trends:
 - 1 one of a pair has a significant difference but not the other. For example, the mean of A_1 differs from the mean of A_2 at level B_2 but not at level B_1
 - 2 both simple main effects are significant, but in the opposite direction. For example, the mean of A_1 is greater than the mean of A_2 at level B_1 , but the pattern is reversed at level B_2

PSYC214: Statistics for Group Comparisons

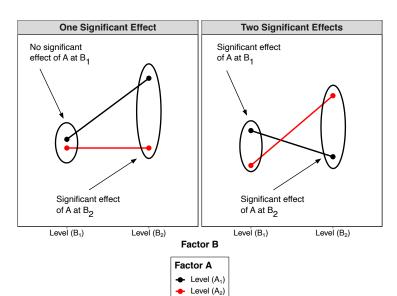
m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effects

Analysis a 2 × 2 Design

Basic Ratios SS WITHIN, BETWEEN, & TOTAL


SS Main Effection

DF ANOVA Table

ANOVA Table

Simple Main Effects

Simple Main Effects

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2×2 Factoria Design

Structure
Main Effects
Simple Main Effects

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN,
TOTAL

SS Main Effects SS Interaction DF

ANOVA Table

Simple Main Effects

Analysis a 2 × 2 Between-Participants Factorial Design

- The first stage of analysis seeks to uncover which of the two main effects and interactions are significant
- If the interaction is significant, then in a second stage we perform a simple main effects analysis
- Although a second factor has been added, the F ratio remains the same:

$$F = \frac{\text{treatment effects} + \text{experimental error}}{\text{experimental error}}$$

As this is a between-participants design:

```
F = \frac{\text{between-group variance}}{\text{within-group variance}}
```

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Structure
Main Effects
Simple Main Effects

Analysis a 2 \times 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL

SS Main Effect SS Interaction

ANOVA Table

Simple Main Effects

Analysis a 2 × 2 Between-Participants Factorial Design

 The main difference is that there are now three F ratios, one for each of the three effects PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effect

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL

SS Main Effects
SS Interaction

ANOVA Table

Simple Main Effects

Hypothetical Data For COVID-19 Study

		Factor A	: Fear
		Level A ₁	Level A ₂
		no fear appeal	fear appeal
Factor B:	Level B ₁ no efficacy message	P ₁ 5	P ₁₃ 6
Efficacy		P ₂ 4	P ₁₄ 4
		P ₃ 6	P ₁₅ 4
		P ₄ 4	P ₁₆ 5
		P ₅ 5	P ₁₇ 8
		P ₆ 6	P ₁₈ 3
	Level B ₂ efficacy message	P ₇ 6	P ₁₉ 10
		P ₈ 6	P ₂₀ 9
		P ₉ 5	P ₂₁ 6
		P ₁₀ 3	P ₂₂ 9
		P ₁₁ 8	P ₂₃ 8
		P ₁₂ 3	P ₂₄ 7

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects Simple Main Effec

Analysis a 2 \times 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

DF ANOVA Table

0:----

Hypothetical Data For COVID-19 Study

		Factor A	: Fear	
		Level A ₁	Level A ₂	
		no fear appeal	fear appeal	Overall
Factor B:	Level B ₁ no efficacy message	5.00	5.00	5.00
Efficacy	Level B ₂ efficacy message	5.17	8.17	6.67
	Overall	5.08	6.58	5.83

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure
Main Effects
Simple Main Effects

Analysis a 2 × 2 Design

Data Basic Ba

Basic Ratios SS WITHIN, BETWEEN,

TOTAL SS Main Effects

SS Interaction

ANOVA Table

Simple Main Effects

$$SS_{BETWEEN} = \frac{(\sum A_1)^2 + (\sum A_2)^2}{N_A} - \frac{(\sum Y)^2}{N}$$

$$SS_{WITHIN} = \sum Y^2 - \frac{(\sum A_1)^2 + (\sum A_2)^2}{N_A}$$

$$SS_{TOTAL} = \sum Y^2 - \frac{(\sum Y)^2}{N}$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Main Effects
Simple Main Effe

Analysis a 2 × 2 Design

Data

Basic Ratios

TOTAL

SS Main Effects

DF

ANOVA Table

ANOVA Table

Effects

$$SS_{BETWEEN} = \frac{(\sum A_1)^2 + (\sum A_2)^2}{N_A} - \frac{(\sum Y)^2}{N}$$

$$SS_{WITHIN} = \sum Y^2 - \frac{(\sum A_1)^2 + (\sum A_2)^2}{N_A}$$

$$SS_{TOTAL} = \sum_{Y}^{2} - \frac{(\sum Y)^{2}}{N}$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Main Effects Simple Main Effec

Analysis a 2 × 2 Design

Data

Basic Ratios

SS WITHIN, BETWEEN, & TOTAL

SS Main Effects

DF

ANOVA Table

Simple N

$$SS_{BETWEEN} = \frac{(\sum A_1)^2 + (\sum A_2)^2}{N_A} - \frac{(\sum Y)^2}{N}$$

$$SS_{WITHIN} = \sum Y^2 - \frac{(\sum A_1)^2 + (\sum A_2)^2}{N_A}$$

$$SS_{TOTAL} = \sum Y^2 - \frac{(\sum Y)^2}{N}$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Main Effects
Simple Main Effe

Analysis a 2 × 2 Design

Data

Basic Ratios

SS WITHIN, BETWEEN,

SS Main Effects

SS Interaction

ANOVA Table

ANOVA Table

Simple Mai

$$SS_{BETWEEN} = \frac{(\sum A_1)^2 + (\sum A_2)^2}{N_A} - \frac{(\sum Y)^2}{N}$$

$$SS_{WITHIN} = \sum Y^2 - \frac{(\sum A_1)^2 + (\sum A_2)^2}{N_A}$$

$$SS_{TOTAL} = \sum Y^2 - \frac{(\sum Y)^2}{N}$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Main Effects
Simple Main Effe

Analysis a 2 × 2 Design

Data

Basic Ratios

SS WITHIN, BETWEEN,

SS Main Effects

SS Interaction

ANOVA Table

ANOVA Table

Effects

$$\frac{(\sum Y)^2}{N}$$
 is $\frac{(\text{grand total})^2}{\text{the number of scores that make up the grand total}}$

$$\frac{(\sum A_1)^2 + (\sum A_2)^2}{N_A} \text{ is } \frac{(\text{level total of } A_1)^2 + (\text{level total of } A_2)^2}{\text{the number of scores that make up each level}}$$

$$\sum Y^2 \text{ is } \frac{(\text{score}_1)^2 + (\text{score}_2)^2 + (\text{score}_3)^2 (\text{and so on})}{1 \text{ (only one number makes up each individual score)}}$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Data
Basic Ratios

SS WITHIN, BETWEEN, TOTAL

S Main Effects

DF

ANOVA Tabl

Simple Main Effects

Basic Ratios

[T]: basic ratio of the grand total, $\frac{(\sum Y)^2}{\Lambda I}$

[A]: basic ratio of the level totals, $\frac{(\sum A_1)^2 + (\sum A_2)^2}{N_A}$

[Y]: basic ratio of the individual scores, $\sum Y^2$

PSYC214 Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Basic Ratios

Basic Ratios

- To compute the components of a factorial between-participants ANOVA, two additional ratios are required
- [B] is the basic ratio of the level totals of factor B. If there are two levels in factor B, then [B] =

$$\frac{(\text{level total of } B_1)^2 + (\text{level total of } B_2)^2}{\text{the number of scores that make up each level}} = \frac{(\sum B_1)^2 + (\sum B_2)^2}{N_B}$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects Simple Main Effects

Analysis a 2 × 2 Design

Data Basic Ratios

SS WITHIN, BETWEEN,

SS Main Effects SS Interaction

ANOVA Toble

Simple Main Effects

Basic Ratios

 [AB] is the basic ratio of the cell totals, where a cell total is the total of all the scores in any one of the cells. For a 2 \times 2 design, [AB] =

(cell total of
$$A_1B_1$$
) $^2+$ (cell total of A_1B_2) $^2+$ (cell total of A_2B_1) $^2+$ (cell total of A_2B_2) 2

the number of scores in each cell

$$= (\sum A_1B_1)^2 + (\sum A_1B_2)^2 + (\sum A_2B_1)^2 + (\sum A_2B_2)^2$$

PSYC214 Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Rasic Ratios

		Factor A: Fear			
		Level A ₁ no fear appeal	Level A ₂ fear appeal		
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =	$[B] = 60^2 + 80^2$
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60	12 = 3600 + 6400
	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total B ₂ =	12
	efficacy message	= 31	= 49	31 + 49 = 80	= 833.3333
		Total A ₁ =	Total A ₂ =	[Y] = 910	
		30 + 31 = 61	30 + 49 = 79	[7] = 310	
		$[A] = \frac{61^2 + 79^2}{12} = \frac{3721 + 6241}{12}$		$[7] = \frac{140}{24} = \frac{19600}{24}$	<u>)</u> = 816.6667
		$=\frac{9962}{12}=830.1667$		24 24	

$$[AB] = \frac{30^2 + 30^2 + 31^2 + 49^2}{6} = \frac{900 + 900 + 961 + 2401}{6} = \frac{5162}{6} = 860.3333$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Structure Main Effects Simple Main Effects

Analysis a 2 \times 2 Design

Data
Basic Ratios

TOTAL SS Main Effects

S Interaction

ANOVA Table

Simple Main Effects

		Factor A: Fear			
		Level A ₁ no fear appeal	Level A ₂ fear appeal		
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =	$[B] = 60^2 + 80^2$
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60	12 = 3600 + 6400
	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total B ₂ =	12
	efficacy message	= 31	= 49	31 + 49 = 80	= 833.3333
		Total A ₁ =	Total A ₂ =	[Y] = 910	
		30 + 31 = 61	30 + 49 = 79	[.]= 010	
		$[A] = \frac{61^2 + 79^2}{12} = \frac{3721 + 6241}{12}$		$[7] = \frac{140}{24} = \frac{19600}{24}$)
		= \frac{996}{12}	$\frac{62}{2} = 830.1667$	24 24	

$$[AB] = \frac{30^2 + 30^2 + 31^2 + 49^2}{6} = \frac{900 + 900 + 961 + 2401}{6} = \frac{5162}{6} = 860.3333$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Structure Main Effects Simple Main Effects

Analysis a 2 \times 2 Design

Data Basic Ratios

SS WITHIN, BETWEEN, TOTAL

S Main Effects S Interaction

ANOVA Table

Simple Main Effects

		Factor A: Fear			
		Level A ₁ no fear appeal	Level A ₂ fear appeal		
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =	$[B] = 60^2 + 80^2$
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60	12 = 3600 + 6400
	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total $B_2 =$	12
	efficacy message	= 31	= 49	31 + 49 = 80	= 833.3333
		Total $A_1 =$ 30 + 31 = 61	Total $A_2 =$ 30 + 49 = 79	[Y] = 910	
		$[A] = \frac{61^2 + 79^2}{12} = \frac{3721 + 6241}{12}$ $= \frac{9962}{12} = 830.1667$		$[7] = \frac{140}{24} = \frac{19600}{24}$	<u>)</u> = 816.6667

$$[AB] = \frac{30^2 + 30^2 + 31^2 + 49^2}{6} = \frac{900 + 900 + 961 + 2401}{6} = \frac{5162}{6} = 860.3333$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Structure Main Effects Simple Main Effects

Analysis a 2 \times 2 Design

Data
Basic Ratios

SS WITHIN, BETWEEN, TOTAL

SS Main Effects SS Interaction

ANOVA Table

Simple Main Effects

		Factor A: Fear			
		Level A ₁ no fear appeal	Level A ₂ fear appeal		
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =	$[B] = \frac{60^2 + 80^2}{12}$
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60	12 = 3600 + 6400
	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total B ₂ =	12
	efficacy message	= 31	= 49	31 + 49 = 80	= 833.3333
		Total A ₁ =	Total $A_2 =$	[Y] = 910	
		30 + 31 = 61	30 + 49 = 79	[7] = 310	
		$[A] = \frac{61^2 + 79^2}{12} = \frac{3721 + 6241}{12}$ $= \frac{9962}{12} = 830.1667$		$[7] = \frac{140}{24} = \frac{19600}{24}$	<u>)</u> = 816.6667

$$[AB] = \frac{30^2 + 30^2 + 31^2 + 49^2}{6} = \frac{900 + 900 + 961 + 2401}{6} = \frac{5162}{6} = 860.3333$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Structure Main Effects Simple Main Effects

Analysis a 2 \times 2 Design

Data Basic Ratios

SS WITHIN, BETWEEN, TOTAL

SS Main Effects SS Interaction

ANOVA Table

Simple Main Effects

		Factor A: Fear			
		Level A ₁ no fear appeal	Level A ₂ fear appeal		
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =	$[B] = \frac{60^2 + 80^2}{12}$
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60	12 = 3600 + 6400
	Level B ₂	Total A_1B_2	Total A ₂ B ₂	Total B ₂ =	12
	efficacy message	= 31	= 49	31 + 49 = 80	= 833.3333
		Total A ₁ =	Total A ₂ =	[Y] = 910	•
		30 + 31 = 61	30 + 49 = 79	[7] = 310	
	$[A] = \frac{61^2 + 79^2}{12} = \frac{3721 + 6241}{12}$ $= \frac{9962}{12} = 830.1667$		$[7] = \frac{140}{24} = \frac{19600}{24}$	<u>0</u> = 816.6667	

$$[AB] = \frac{30^2 + 30^2 + 31^2 + 49^2}{6} = \frac{900 + 900 + 961 + 2401}{6} = \frac{5162}{6} = 860.3333$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Structure Main Effects Simple Main Effects

Analysis a 2 × 2 Design

Data
Basic Ratios

S WITHIN, BETWEEN

SS Main Effects SS Interaction

ANOVA Table

Simple Main Effects

		Factor A: Fear			
		Level A ₁ no fear appeal	Level A ₂ fear appeal		
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =	$[B] = \frac{60^2 + 80^2}{12}$
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60	12 = 3600 + 6400
	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total B ₂ =	12
	efficacy message	= 31	= 49	31 + 49 = 80	= 833.3333
		Total $A_1 =$ 30 + 31 = 61	Total <i>A</i> ₂ = 30 + 49 = 79	[Y] = 910	
		$[A] = \frac{61^2 + 79^2}{12} = \frac{3721 + 6241}{12}$ $= \frac{9962}{12} = 830.1667$		$[7] = \frac{140}{24} = \frac{19600}{24}$) = 816.6667

$$[AB] = \frac{30^2 + 30^2 + 31^2 + 49^2}{6} = \frac{900 + 900 + 961 + 2401}{6} = \frac{5162}{6} = 860.3333$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects Simple Main Effects

Analysis a 2 \times 2 Design

Data
Basic Ratios

SS WITHIN, BETWEEN, & TOTAL

SS Main Effects SS Interaction

ANOVA Table

Simple Main Effects

		Factor A: Fear			
		Level A ₁ no fear appeal	Level <i>A₂</i> fear appeal		
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =	$[B] = \frac{60^2 + 80^2}{12}$
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60	12 = 3600 + 6400
	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total B ₂ =	12
	efficacy message	= 31	= 49	31 + 49 = 80	= 833.3333
		Total A ₁ =	Total A ₂ =	[Y] = 910	
		30 + 31 = 61	30 + 49 = 79	[.] = 010	
		$[A] = \frac{61^2 + 79^2}{12}$ $= \frac{996}{12}$	$\frac{6}{12} = \frac{3721 + 6241}{12}$ $\frac{62}{2} = 830.1667$	$[7] = \frac{140}{24} = \frac{19600}{24}$) = 816.6667

$$[AB] = \frac{30^2 + 30^2 + 31^2 + 49^2}{6} = \frac{900 + 900 + 961 + 2401}{6} = \frac{5162}{6} = 860.3333$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Structure Main Effects Simple Main Effects

Analysis a 2 \times 2 Design

Data Basic Ratios

> SS WITHIN, BETWEE FOTAL SS Main Effects

S Main Effects
S Interaction

ANOVA Table

Simple Main Effects

		Factor A: Fear			
		Level A ₁ no fear appeal	Level A ₂ fear appeal		
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =	$[B] = \frac{60^2 + 80^2}{12}$
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60	12 = 3600 + 6400
	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total B ₂ =	12
	efficacy message	= 31	= 49	31 + 49 = 80	= 833.3333
		Total A ₁ =	Total A ₂ =	[Y] = 910	
		30 + 31 = 61	30 + 49 = 79	[7] = 010	
		$[A] = \frac{61^2 + 79^2}{12} = \frac{3721 + 6241}{12}$		$[7] = \frac{140}{24} = \frac{19600}{24}$	<u>)</u> = 816.6667
		= \frac{996}{12}	$\frac{62}{2} = 830.1667$	24 24	

$$[AB] = \frac{30^2 + 30^2 + 31^2 + 49^2}{6} = \frac{900 + 900 + 961 + 2401}{6} = \frac{5162}{6} = 860.3333$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Structure Main Effects Simple Main Effects

Analysis a 2 \times 2 Design

Data

Basic Ratios

SS WITHIN, BETWEEN, TOTAL

SS Main Effects SS Interaction

DF ANOVA Table

Simple Main Effects

		Factor A: Fear			
		Level A ₁ no fear appeal	Level A ₂ fear appeal		
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =	$[B] = \frac{60^2 + 80^2}{12}$
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60	12 = 3600 + 6400
	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total B ₂ =	12
	efficacy message	= 31	= 49	31 + 49 = 80	= 833.3333
		Total A ₁ =	Total $A_2 =$	[Y] = 910	
		30 + 31 = 61	30 + 49 = 79	[,]=010	
		$[A] = \frac{61^2 + 79^2}{12} = \frac{3721 + 6241}{12}$ $= \frac{9962}{12} = 830.1667$		$[7] = \frac{140}{24} = \frac{19600}{24}$	<u>)</u> = 816.6667

$$[AB] = \frac{30^2 + 30^2 + 31^2 + 49^2}{6} = \frac{900 + 900 + 961 + 2401}{6} = \frac{5162}{6} = 860.3333$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Structure Main Effects Simple Main Effects

Analysis a 2 \times 2 Design

Data Basic Ratios

SS WITHIN, BETWEEN, TOTAL

S Main Effects S Interaction

ANOVA Table

Simple Main Effects

Calculating The Sum of Squares For The Error Term

- Within-group variance is a measure of the extent to which people within each of the groups behave differently, despite being treated alike
- For a 2 × 2 between-participants design, people have been treated exactly alike *only* within each of the four cells
- To calculate the error term, we compute and combine the Sums of Squares and degrees of freedom using the smallest unit of identically treated participants—the four cells
- This gives a single measure of experimental error that can be used for calculating the Fs for all the effects

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects Simple Main Effects

Analysis a 2 × 2 Design

Basic Ratios
SS WITHIN, BETWEEN, &

SS Main Effects SS Interaction

DF ANOVA Table

Simple Main

Calculating The Sum of Squares For The Error Term

• We calculate the error term, SS_{WITHIN} , as follows:

$$SS_{WITHIN} = [Y] - [AB]$$
 SS_{WITHIN} will be designated $SS_{S/AB}$

- This produces the error term that will be used to calculate all the Fs
- This is the overall measure of the extent to which participants behaved differently despite being treated alike

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure

Main Effects

Simple Main Effec

Analysis a 2 × 2 Design

Data

Basic Ratios

SS WITHIN, BETWEEN, &

SS Main Effects

DF

ANOVA Tabl

Simple Main Effects

- We also need to calculate the total between-group Sum of Squares for the four cells
- This is a measure of the variability due to the various experimental treatments
- It is a measure of how distant each of the four cell means is from the grand mean
- It tells us the overall extent to which the treatments caused scores to differ
- The between-group Sum of Squares is calculated as:

 $SS_{BETWEEN} = [AB] - [T]$ $SS_{BETWEEN}$ will be designated SS_{AB}

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects Simple Main Effects

Analysis a 2 × 2 Design

Data

Basic Ratios

SS WITHIN, BETWEEN, &
TOTAL

SS Main Effects SS Interaction

ANOVA Table

Simple Main Effects

Total Sum of Squares

- We also need to calculate the total Sum of Squares
- This is a measure of total variability for the entire data set irrespective of experimental treatments
- It is calculated as:

$$SS_{TOTAL} = [Y] - [T]$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &

SS Main Effects SS Interaction

DF

ANOVA Table

Simple Main

SS Main Effects

 Two between-group sums of squares are required, one for each of the main effects

- Each main effect is treated as being completely independent from the other
 - e.g., when calculating the main effect of factor A, the fact participants were treated in different ways at factor B is ignored
- The Sums of Squares for the two main effects are calculated as:

for the between-group sums of squares for factor A, $SS_A = [A] - [T]$ for the between-group sums of squares for factor B, $SS_B = [B] - [T]$

SS Interaction

 To test the significance of the interaction, a final Sums of Squares is required

This is calculated as:

$$SS_{INTERACTION}$$
, $SS_{A\times B} = [AB] - [A] - [B] + [T]$

- This is the variability in thee group means not accounted for by the main effects
- It is the variability caused by the interaction between factor A and factor В

Calculating The Sums of Squares Discussed So Far

Within-group Sum of Squares:
$$SS_{S/AB} = [Y] - [AB]$$

$$= 910 - 860.3333 = 49.67$$

Total between-group Sum of Squares:
$$SS_{AB} = [AB] - [T]$$

$$= 860.3333 - 816.6667 = 43.67$$

Total Sum of Squares:
$$SS_{TOTAL} = [Y] - [T]$$

$$= 910 - 816.6667 = 93.33$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure

Main Effects

Simple Main Effect

Analysis a 2 × 2 Design

Data
Basic Ratios

FOTAL SS Main Effects

SS Interaction

ANOVA Table

Simple Main Effects

Calculating The Sums of Squares Discussed So Far

Between-group Sum of Squares for factor A: $SS_A = [A] - [T]$

$$= 830.1667 - 816.667 = 13.50$$

Between-group Sum of Squares for factor B: $SS_B = [B] - [T]$

$$= 833.3333 - 816.6667 = 16.67$$

Sum of Squares for interaction: $SS_{A\times B} = [AB] - [A] - [B] + [T]$

$$= 860.3333 - 830.1667 - 833.3333 + 816.6667 = 13.50$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN,
TOTAL

SS Main Effects
SS Interaction

ANOVA Table

Simple Mair

$$df_A =$$
(number of levels in factor $A - 1$) = $(a - 1)$
(a is the number of levels in factor A)

$$df_B = (\text{number of levels in factor } B - 1) = (b - 1)$$

(b is the number of levels in factor B)

For the interaction:

$$df_{A\times B}=df_A\times df_B=(a-1)(b-1)$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects Simple Main Effec

Analysis a 2 × 2 Design

Data

Basic Ratios

SS WITHIN, BETWEEN, & TOTAL

SS Main Effects

SS Interaction

ANOVA Table

Simple Mai

Degrees of Freedom

For the within-group variance (the error term):

$$df_{S/AB} = [(\text{number of cells}) \times (\text{number of scores in cell} - 1)]$$

$$= ab(s - 1)$$
(s is the number of scores in a cell)

For the total degrees of freedom:

$$df_{TOTAL} = (\text{total number of scores } -1) = (abs) - 1$$

PSYC214 Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Degrees of Freedom

• The various degrees of freedom should add up so that:

$$df_{TOTAL} = df_A + df_B + df_{A \times B} + df_{S/AB}$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Data Basic Rati

Basic Ratios SS WITHIN, BETWI

SS Main Effects

SS Interaction

DF

ANOVA Table

Simple Main Effects

Calculating The Degrees of Freedom Discussed So Far

$$df_A = (a-1) = 2-1 = 1$$
 (factor A has two levels)

$$df_B = (b-1) = 2-1 = 1$$
(factor B has two levels)

$$df_{A\times B} = (a-1)(b-1) = 1\times 1 = 1$$

$$df_{S/AB} = ab(s-1) = 2 \times 2(6-1) = 20$$
 (six participants per cell)

$$df_{TOTAL} = (abs) - 1 = (2 \times 2 \times 6) - 1 = 23$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster ac uk

Summary ANOVA Table By Components

Source	Sum of Squares	Degrees of freedom	Mean Square	F	Þ
A	[A] - [T]	(a - 1)	$\frac{[A] - [T]}{(a - 1)}$	Mean Square _A Mean Square _{S/AB}	tables
В	[B] — [T]	(b - 1)	$\frac{[B]-[T]}{(b-1)}$	Mean Square _B Mean Square _{S/AB}	tables
$A \times B$	[AB] — [A] — [B] + [T]	(a - 1)(b - 1)	$\frac{[AB] - [A] - [B] + [T]}{(a - 1)(b - 1)}$	$\frac{\text{Mean Square}_{A\times B}}{\text{Mean Square}_{S/AB}}$	tables
S/AB TOTAL	[Y] - [AB] [Y] - [T]	ab(s-1) $(abs)-1$	$\frac{[Y] - [AB]}{ab(s - 1)}$		

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure
Main Effects
Simple Main Effects

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

SS Main Effects SS Interaction DF

ANOVA Table

Simple Main Effects

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Р
Α	13.50	1			
В	16.67	1			
$A \times B$	13.50	1			
S/AB	49.67	20			
TOTAL	93.33	23			

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure

Main Effects

Simple Main Effect

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEI

SS Main Effects SS Interaction

ANOVA Table

Simple Main Effects

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Р
Α	13.50	1	13.50		
В	16.67	1	16.67		
$A \times B$	13.50	1	13.50		
S/AB	49.67	20	2.48		
TOTAL	93.33	23	4.06		

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure

Main Effects

Simple Main Effect

Analysis a 2 × 2 Design

Basic Ratios SS WITHIN, BETWEEN, & TOTAL

SS Main Effects
SS Interaction

ANOVA Table

Simple Mai

Between-Group SS & DF

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Р
Α	13.50	1	13.50	5.44	
В	16.67	1	16.67	6.72	
$A \times B$	13.50	1	13.50	5.44	
S/AB	49.67	20	2.48		
TOTAL	93.33	23	4.06		

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure

Main Effects

Simple Main Effect

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

SS Interaction
DF

ANOVA Table

Simple Main Effects

Between-Group SS & DF

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Р
Α	13.50	1	13.50	5.44	< .05
В	16.67	1	16.67	6.72	< .05
$A \times B$	13.50	1	13.50	5.44	< .05
S/AB	49.67	20	2.48		
TOTAL	93.33	23	4.06		

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure
Main Effects
Simple Main Effects

Analysis a 2 \times 2 Design

Data Basic Ratios SS WITHIN, BETWEEN, & TOTAL

SS Main Effects SS Interaction

ANOVA Table

Simple Main Effects

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	P
Α	13.50	1	13.50	5.44	< .05
В	16.67	1	16.67	6.72	< .05
$A \times B$	13.50	1	13.50	5.44	< .05
S/AB	49.67	20	2.48		
TOTAL	93.33	23	4.06		

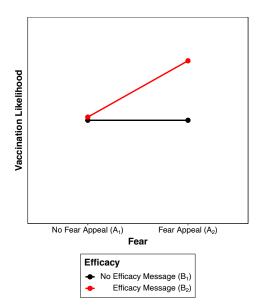
PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects Simple Main Effects

Analysis a 2 imes 2 Design


Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL

SS Main Effects
SS Interaction

ANOVA Table

Simple Main Effects

Interaction Plot

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Main Effects
Simple Main Effe

Analysis a 2 × 2 Design

Data

SS WITHIN, BETWEI

SS Main Effects

SS Interaction

ANOVA Table

ANOVA TABLE

Effects

Simple Main Effects

- If the interaction is significant, then we interpret it by analysing the simple main effects
- In a 2 \times 2 design, these are simply pairwise comparisons, analogous to using four t-tests
- This involves calculating the between-group variance for each simple main effect, before dividing each variance by the error term (S/AB) from the original ANOVA
- Thus, the significance of the simple main effects is evaluated using the same error term used to test the significance of the main effects and interaction

Simple Main Effects

 $P_1 P_2 P_3$ P₁₀ P₁₁ P₁₂ P₄ P₅ P₆ $P_{13} P_{14} P_{15}$ P₇ P₈ P₉ P₁₆ P₁₇ P₁₈ Main effect of A: To find out whether the P₁₉ P₂₀ P₂₁ main effect of A is significant, calculate P₂₈ P₂₉ P₃₀ the between-group variance of the $P_{22} P_{23} P_{24}$ P₃₁ P₃₂ P₃₃ means of A_1 and A_2 in relation to the P₂₅ P₂₆ P₂₇ P₃₄ P₃₅ P₃₆ grand mean (ignoring factor B). The Mean A Mean A bigger thee variance, the bigger the difference between thee means and the more likely that the difference is significant. Grand mean

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design


Structure Main Effects Simple Main Effect

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects
SS Interaction

Simple Main Effects

Simple Main Effects

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Simple Main Effects

- The formula for calculating a between-group Sum of Squares is the basic ratio of the group totals of interest, minus the basic ratio of the total of these totals [7]
- For example, the formula for calculating the between-group variance for the main effect of factor A is [A] - [T]
- The basic ratios used to calculate the between-group variances for the simple main effects are analogous to these

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects Simple Main Effects

Analysis a 2 × 2 Design

Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL

SS Main Effection
SS Interaction
DF

ANOVA Table

Simple Main Effects

- For example:
- $[A_{B_1}]$ is the basic ratio of factor A, but *only* for the B_1 scores: square the total for A_1B_1 , square the total for A_2B_1 , add the squares together and divide by the number of scores that make up each cell.
- $[T_{B_1}]$ is the basic ratio of the total of the scores at level B_1 of factor B: take the total of all the scores in level B_1 and square the total, divide the square by the number of scores making up this total.
- Eight basic ratios are required to test the four simple main effects ...

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2×2 Factorial Design

Structure Main Effects Simple Main Effects

Analysis a 2 × 2 Design

Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

SS Interaction

ANOVA Table

Olemente MA

Simple Main Effects

Between-Group SS & DF

Sum of Squares between groups of factor A at level $B_1(SS_{A \text{ at } B_1})$: $[A_{B_1}] - [T_{B_1}]$

Sum of Squares between groups of factor A at level $B_2(SS_{A \text{ at } B_2})$: $[A_{B_2}] - [T_{B_2}]$

Sum of Squares between groups of factor B at level $A_1(SS_{B \text{ at } A_1})$: $[B_{A_1}] - [T_{A_2}]$

Sum of Squares between groups of factor B at level $A_2(SS_{B\ at\ A_2})$: $[B_{A_2}] - [T_{A_2}]$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure

Main Effects

Simple Main Effe

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN,
TOTAL

SS Main Effect SS Interaction

ANOVA Table

Simple Main Effects

Calculating Between-Group Degrees Of Freedom

- All degrees of freedom are equal to the number of ([number of levels in each simple main effect]) - 1
- For the two simple main effects of A, the degrees of freedom are given by (a - 1), where a is the number of levels in factor A
- For the two simple main effects of B, the degrees of freedom are given by (b-1), where b is the number of levels in factor B

PSYC214 Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Between-Group SS & DF

		Factor A: Fear		
		Level A ₁	Level A ₂ fear appeal	
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60
,	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total B ₂ =
	efficacy message	= 31	= 49	31 + 49 = 80
		Total A ₁ =	Total $A_2 =$	
		30 + 31 = 61	30 + 49 = 79	

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure
Main Effects
Simple Main Effects

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects
SS Interaction
DF

ANOVA Table

Simple Main Effects

• Fear (no fear appeal vs. fear appeal) for no efficacy message (A at B_1)

$$[A_{B_1}] = \frac{30^2 + 30^2}{6} = 300 \ [T_{B_1}] = \frac{60^2}{12} = 300 \ [A_{B_1}] - [T_{B_1}] = 0$$

• Fear (no fear appeal vs. fear appeal) for efficacy message (A at B_2)

$$[A_{B_2}] = \frac{31^2 + 49^2}{6} = 560.33 \ [T_{B_2}] = \frac{80^2}{12} = 533.33 \ [A_{B_2}] - [T_{B_2}] = 27$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Jata Basic Ratios BS WITHIN, BETWEEN, & FOTAL BS Main Effects

SS Interaction

ANOVA Table

Simple Main Effects

$$[A_{B_1}] = \frac{30^2 + 30^2}{6} = 300 \ [T_{B_1}] = \frac{60^2}{12} = 300 \ [A_{B_1}] - [T_{B_1}] = 0$$

• Fear (no fear appeal vs. fear appeal) for efficacy message (A at B_2)

$$[A_{B_2}] = \frac{31^2 + 49^2}{6} = 560.33 \ [T_{B_2}] = \frac{80^2}{12} = 533.33 \ [A_{B_2}] - [T_{B_2}] = 27$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

SS Main Effection

ANOVA Table

Simple Main Effects

		Factor A: Fear		
		Level A ₁ no fear appeal	Level <i>A₂</i> fear appeal	
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60
,	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total B ₂ =
	efficacy message	= 31	= 49	31 + 49 = 80
		Total A ₁ =	Total $A_2 =$	
		30 + 31 = 61	30 + 49 = 79	

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects Simple Main Effects

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects
SS Interaction

ANOVA Table

Simple Main Effects

$$[A_{B_1}] = \frac{30^2 + 30^2}{6} = 300 \ [T_{B_1}] = \frac{60^2}{12} = 300 \ [A_{B_1}] - [T_{B_1}] = 0$$

• Fear (no fear appeal vs. fear appeal) for efficacy message (A at B_2)

$$[A_{B_2}] = \frac{31^2 + 49^2}{6} = 560.33 \ [T_{B_2}] = \frac{80^2}{12} = 533.33 \ [A_{B_2}] - [T_{B_2}] = 27$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

SS Main Effection

ANOVA Table

Simple Main Effects

• Fear (no fear appeal vs. fear appeal) for no efficacy message (A at B_1)

$$[A_{B_1}] = \frac{30^2 + 30^2}{6} = 300 \ [T_{B_1}] = \frac{60^2}{12} = 300 \ [A_{B_1}] - [T_{B_1}] = 0$$

• Fear (no fear appeal vs. fear appeal) for efficacy message (A at B_2)

$$[A_{B_2}] = \frac{31^2 + 49^2}{6} = 560.33 \ [T_{B_2}] = \frac{80^2}{12} = 533.33 \ [A_{B_2}] - [T_{B_2}] = 27$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

SS Main Effection
SS Interaction
DF

ANOVA Table

Simple Main Effects

		Factor		
		Level A ₁ no fear appeal	Level A ₂ fear appeal	
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60
,	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total $B_2 =$
	efficacy message	= 31	= 49	31 + 49 = 80
		Total A ₁ =	Total A ₂ =	
		30 + 31 = 61	30 + 49 = 79	

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Structure Main Effects Simple Main Effects

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects
SS Interaction
DF

ANOVA Table

Simple Main Effects

• Fear (no fear appeal vs. fear appeal) for no efficacy message (A at B_1)

$$[A_{B_1}] = \frac{30^2 + 30^2}{6} = 300 \ [T_{B_1}] = \frac{60^2}{12} = 300 \ [A_{B_1}] - [T_{B_1}] = 0$$

• Fear (no fear appeal vs. fear appeal) for efficacy message (A at B_2)

$$[A_{B_2}] = \frac{31^2 + 49^2}{6} = 560.33 \ [T_{B_2}] = \frac{80^2}{12} = 533.33 \ [A_{B_2}] - [T_{B_2}] = 27$$

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

SS Main Effection
SS Interaction
DF

ANOVA Table

Simple Main Effects

$$[B_{A_1}] = \frac{30^2 + 31^2}{6} = 310.17 \ [T_{A_1}] = \frac{61^2}{12} = 310.08 \ [B_{A_1}] - [T_{A_1}] = .09$$

Efficacy (no efficacy message vs. efficacy message) for fear appeal (B at A₂)

$$[B_{A_2}] = \frac{30^2 + 49^2}{6} = 550.17 \ [T_{A_2}] = \frac{79^2}{12} = 520.08 \ [B_{A_2}] - [T_{A_2}] = 30.09$$

PSYC214 Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Between-Group SS & DF

$$[B_{A_1}] = \frac{30^2 + 31^2}{6} = 310.17 \ [T_{A_1}] = \frac{61^2}{12} = 310.08 \ [B_{A_1}] - [T_{A_1}] = .09$$

• Efficacy (no efficacy message vs. efficacy message) for fear appeal (B at A_2)

$$[B_{A_2}] = \frac{30^2 + 49^2}{6} = 550.17 \ [T_{A_2}] = \frac{79^2}{12} = 520.08 \ [B_{A_2}] - [T_{A_2}] = 30.09$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure

Main Effects

Simple Main Effec

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

SS Interaction

ANOVA Table

Simple Main Effects

		Factor	Factor A: Fear	
		Level A ₁ no fear appeal	Level A ₂ fear appeal	
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60
	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total B ₂ =
	efficacy message	= 31	= 49	31 + 49 = 80
		Total A ₁ =	Total A ₂ =	
		30 + 31 = 61	30 + 49 = 79	

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects Simple Main Effects

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects
SS Interaction

ANOVA Table

Simple Main Effects

$$[B_{A_1}] = \frac{30^2 + 31^2}{6} = 310.17 \ [T_{A_1}] = \frac{61^2}{12} = 310.08 \ [B_{A_1}] - [T_{A_1}] = .09$$

• Efficacy (no efficacy message vs. efficacy message) for fear appeal (B at A_2)

$$[B_{A_2}] = \frac{30^2 + 49^2}{6} = 550.17 \ [T_{A_2}] = \frac{79^2}{12} = 520.08 \ [B_{A_2}] - [T_{A_2}] = 30.09$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

SS Main Effect SS Interaction DF

ANOVA Table

Simple Main Effects

		Factor A: Fear		
		Level A ₁ no fear appeal	Level <i>A₂</i> fear appeal	
Factor B	Level B ₁	Total A ₁ B ₁	Total A ₂ B ₁	Total B ₁ =
Efficacy	no efficacy message	= 30	= 30	30 + 30 = 60
	Level B ₂	Total A ₁ B ₂	Total A ₂ B ₂	Total B ₂ =
	efficacy message	= 31	= 49	31 + 49 = 80
		Total A ₁ =	Total A ₂ =	
		30 + 31 = 61	30 + 49 = 79	

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure Main Effects Simple Main Effects

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects
SS Interaction

ANOVA Table

Simple Main Effects

$$[B_{A_1}] = \frac{30^2 + 31^2}{6} = 310.17 \ [T_{A_1}] = \frac{61^2}{12} = 310.08 \ [B_{A_1}] - [T_{A_1}] = .09$$

• Efficacy (no efficacy message vs. efficacy message) for fear appeal (B at A_2)

$$[B_{A_2}] = \frac{30^2 + 49^2}{6} = 550.17 \ [T_{A_2}] = \frac{79^2}{12} = 520.08 \ [B_{A_2}] - [T_{A_2}] = 30.09$$

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects

SS Main Effect SS Interaction DF

ANOVA Table

Simple Main Effects

Summary Simple Main Effects Table By Components

SOURCE	Sum of Squares	Degrees of freedom	Mean Square	E	Þ
A at B ₁	$[A_{B_1}]-[T_{B_1}]$	(a - I)	$\frac{[A_{B_1}]-[T_{B_1}]}{(a-1)}$	Mean Square _{AatB₁} Mean Square _{S/AB}	tables
A at B ₂	$[A_{B_2}]-[T_{B_2}]$	(a - I)	$\frac{[A_{B_2}] - [T_{B_2}]}{(a - 1)}$	$\frac{Mean\ Square_{AatB_2}}{Mean\ Square_{S/AB}}$	tables
B at A ₁	$[B_{A_1}] - [T_{A_1}]$	(b - I)	$\frac{[B_{A_1}] - [T_{A_1}]}{(b-1)}$	$\frac{Mean \; Square_{\mathcal{B}atA_1}}{Mean \; Square_{S/AB}}$	tables
B at A ₂	$[B_{A_2}] - [T_{A_2}]$	(b - I)	$\frac{[B_{A_2}] - [T_{A_2}]}{(b-1)}$	$\frac{Mean\ Square_{BatA_2}}{Mean\ Square_{S/AB}}$	tables
S/AB	[Y] - [AB]	ab(s - 1)	$\frac{[Y] - [AB]}{ab(s - 1)}$		

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure

Main Effects

Simple Main Effect

Analysis a 2 \times 2 Design

Data Basic Ratios SS WITHIN, BETWEEN, & FOTAL SS Main Effects

DF ANOVA Table

Simple Ma

Simple Main Effects Table For Hypothetical Data

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Р
A at B ₁	0.00	1	0.00	0.00	1.000
A at B ₂	27.00	1	27.00	10.89	< .01
B at A_1	0.09	1	0.09	0.04	.856
B at A_2	30.09	1	30.09	12.13	< .01
S/AB (error)	49.67	20	2.48		

PSYC214: Statistics for Group Comparisons

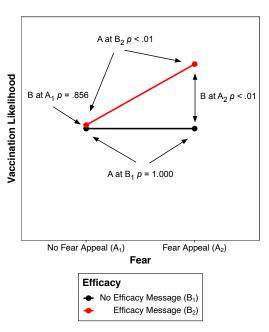
m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Structure

Main Effects

Simple Main Effect


Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, &
TOTAL
SS Main Effects
SS Interaction

ANOVA Table

Simple Main

Interaction Plot

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Main Effects
Simple Main Effect

Analysis a 2 × 2 Design

Data Basic Batios

SS WITHIN, BETWEEN, 8

SS Main Effect

SS Interaction DF

ANOVA Table

Simple M

Additional Resources

The R code for all plots generated in this lecture (minus annotations)
has been uploaded with these slides to the Week 6 lecture folder (R
Plots For Lecture 7.R)

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN,
TOTAL

SS Main Effection

ANOVA Table

Simple Main

In Next Week's Lab ...

- Running a 2 \times 2 (and 2 \times 3) between-participants ANOVA in R
- · Calculating and interpreting simple main effects

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

2 × 2 Factoria Design

Main Effects
Simple Main Effe

Analysis a 2 × 2 Design

Data

Basic Ratios

SS WITHIN, BETWEEN,

SS Main Effects

DF

ANOVA Table

Simple M

References

Roberts, M. J., & Russo, R. (1999, Chapter 9–10). *A student's guide to Analysis of Variance*. Routledge: London.

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

2 × 2 Factorial Design

Main Effects
Simple Main Effec

Analysis a 2 × 2 Design

Data Basic Batic

SS WITHIN, BETWEEN, &

SS Main Effect

SS Interaction

ANOVA Table

ANOVA Table

Effects